Effect of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths
نویسندگان
چکیده
OBJECTIVES Determine effects of a limited-enforcement intelligent tutoring system in dermatopathology on student errors, goals and solution paths. Determine if limited enforcement in a medical tutoring system inhibits students from learning the optimal and most efficient solution path. Describe the type of deviations from the optimal solution path that occur during tutoring, and how these deviations change over time. Determine if the size of the problem-space (domain scope), has an effect on learning gains when using a tutor with limited enforcement. METHODS Analyzed data mined from 44 pathology residents using SlideTutor-a Medical Intelligent Tutoring System in Dermatopathology that teaches histopathologic diagnosis and reporting skills based on commonly used diagnostic algorithms. Two subdomains were included in the study representing sub-algorithms of different sizes and complexities. Effects of the tutoring system on student errors, goal states and solution paths were determined. RESULTS Students gradually increase the frequency of steps that match the tutoring system's expectation of expert performance. Frequency of errors gradually declines in all categories of error significance. Student performance frequently differs from the tutor-defined optimal path. However, as students continue to be tutored, they approach the optimal solution path. Performance in both subdomains was similar for both errors and goal differences. However, the rate at which students progress toward the optimal solution path differs between the two domains. Tutoring in superficial perivascular dermatitis, the larger and more complex domain was associated with a slower rate of approximation towards the optimal solution path. CONCLUSIONS Students benefit from a limited-enforcement tutoring system that leverages diagnostic algorithms but does not prevent alternative strategies. Even with limited enforcement, students converge toward the optimal solution path.
منابع مشابه
A General Architecture for Intelligent Tutoring of Diagnostic Classification Problem Solving
We report on a general architecture for creating knowledge-based medical training systems to teach diagnostic classification problem solving. The approach is informed by our previous work describing the development of expertise in classification problem solving in Pathology. The architecture envelops the traditional Intelligent Tutoring System design within the Unified Problem-solving Method de...
متن کاملProcedural Help in Andes: Generating Hints Using a Bayesian Network Student Model
One of the most important problems for an intelligent tutoring system is deciding how to respond when a student asks for help. Responding cooperatively requires an understanding of both what solution path the student is pursuing, and the student’s current level of domain knowledge. Andes, an intelligent tutoring system for Newtonian physics, refers to a probabilistic student model to make decis...
متن کاملAutomating Hint Generation with Solution Space Path Construction
Developing intelligent tutoring systems from student solution data is a promising approach to facilitating more widespread application of tutors. In principle, tutor feedback can be generated by matching student solution attempts to stored intermediate solution states, and next-step hints can be generated by finding a path from a student’s current state to a correct solution state. However, exa...
متن کاملReachability checking in complex and concurrent software systems using intelligent search methods
Software system verification is an efficient technique for ensuring the correctness of a software product, especially in safety-critical systems in which a small bug may have disastrous consequences. The goal of software verification is to ensure that the product fulfills the requirements. Studies show that the cost of finding and fixing errors in design time is less than finding and fixing the...
متن کاملTracing Knowledge and Engagement in Parallel in an Intelligent Tutoring System
Two of the major goals in Educational Data Mining are determining students’ state of knowledge and determining whether students are affectively engaged with the task and in positive affective states. These two problems are usually examined separately and multiple methods have been proposed to solve each of them. However, little work has been done on tracing both of these states in parallel and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial intelligence in medicine
دوره 47 3 شماره
صفحات -
تاریخ انتشار 2009